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Conditions for the separation of the Hamilton-Jacobi 
equation 

C D Collinson and J Fugbre 
Department of Applied Mathematics, The University, Hull, HU6 7Rx, UK 

Received 9 June 1977 

Abstract. Necessary and sufficient conditions for the separation of the Hamilton-Jacobi 
equation for the geodesics in an n-dimensional Riemannian or pseudo-Semannian mani- 
fold are obtained. The integrability of these conditions is investigated and several results are 
found which are of particular interest in the four-dimensional space-times of general 
relativity. 

1. Introduction 

The Hamilton-Jacobi equation for the geodesics in an n-dimensional Riemannian or 
pseudo-Riemannian manifold V, with metric tensor g" is 

gi%,is,/ - m 2  = 0. 

s = Sl(X1)+S(X2, x3, . . . , x"). 

(1.1) 

(1.2) 

A solution S of this equation separates with respect to the coordinate x 1  if 

The Hamilton-Jacobi equation is said to separate with respect to the coordinate x if 
when (1.2) is substituted into (1.1) the resulting equation, after multiplication by an 
integrating factor U, can be written as the sum of a function of x 1  and a function of x2, 
x , . . . , X "  for arbitrary functions S1 and S. A generalisation of this definition of 
separability is the definition used by Carter (1968) and Collinson and Fugkre (1977) in 
obtaining empty space-times in which the Hamilton-Jacobi equation separates (further 
details are given in § 5 ) .  It is also the definition used by Dietz (1976). An alternative, 
less restrictive, definition is used by Woodhouse (1975) in his investigation of the 
relationship between separability and the existence of constants of motion for the 
geodesics. This definition is that the Hamilton-Jacobi equation is said to separate with 
respect to the coordinate x if there exists a complete solution S which separates with 
respect to xl. In this paper the first definition will be used throughout. 

In § 2 necessary and sufficient conditions for separation will be given in a covariant 
form. The integrability conditions for these are investigated in P 2, and the following 
theorem is proved. 

3 

Theorem 1. The Hamilton-Jacobi equation can only separate in space-times of Petrov 
type I, D or, provided the separable coordinate is space-like, type 11. 

The integrability conditions take a particularly simple form in an Einstein space and 
in § 3 these lead to the following theorem. 

1877 
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lleorem 2. The Hamilton-Jacobi equation can only separate in a four-dimensional 
Einstein jpace of normal hyperbolic signature if the space-time is conformally flat. 

Finally, in 0 5 the definition of separability is extended to spaces V,, admitting an 
Abelian group of motions. 

2. Covariant condition for separation 

The condition (1.2) is equivalent to the differential condition 

S, la  = 0 (2.1) 
where a = 2 ,3 ,  . . . , n. Hence, according to the definition used here, the Hamilton- 
Jacobi equation will separate with respect to x ' if and only if 

(UgijS,iS,j - Um2),1a = o (2.2) 
for all functions S satisfying (2.1). It is convenient to introduce the conformal space Cn 
with metric 

(2.3) g i j  = ugij 

so that equation (2.2) becomes simply 

(~""s,~s,~ - Um2),lo = 0. 

Using (2.1) this can be written as 

giJ,IaS,iS,, + 2 g " , 1 ~ , ~ ~ , B ~  + 2 g " , , ~ , ~ ~ , 1 1  + 2 g B ' ~ , B a ~ , 1 1  - m2U,la = 0. (2.4) 
The necessary and sufficient conditions for the Hamilton-Jacobi equation to separate 
with respect to x '  are that (2.4) should hold for arbitrary values of S,i, S,Ba and S,ll .  
Hence 

and 

U,la = 0. (2.9) 
The condition (2.9) implies that the integrating factor U itself separates. The condition 
(2.5) is identically satisfied by virtue of (2.6) and (2.7) and the only component of (2.7) 
which is not identically satisfied by virtue of (2.8) is = 0. Since g" is a function of 
x 1  alone a coordinate transformation x ' + f ( x ' )  can be used to set g" = ~ ( & 1 ) ,  This 
transformation does not affect the separation. Thus the necessary and sufficient 
conditions for separation are that there exist a coordinate system such that 

i " , l  = 0 (2. loa)  

(2.10b) 

(2.10c) 
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and 
U,lP = 0. (2.10d) 

These conditions can be stated in a covariant form, namely that there exist a vector field 
P i  and a scalar field U satisfying 

(2.1 la)  

pipi = E (2.11b) 
f g i j = O  

Pi  is hypersurface orthogonal 
and 

f v,I(S; -€Pi@ = 0. 

(2.11c) 

(2.1 Id)  

Here 2 is the Lie derivative, pi = gijP' and Si-ePi8  is the projection operator which 
projects perpendicular to Pi.  The equivalence of the two sets of conditions can easily be 
demonstrated by choosing a preferred coordinate system with P i  = Sf ,  x 1  = constant 
being the hypersurfaces orthogonal to Pi.  If the equations (2.11) admit two commuting 
vectors then the coordinates can be chosen so that both x 1  and x 2  separate. This 
generalises to any nu?ber of commuting vectors. Written in terms of the space V, 
rather than the space V. these conditions become 

(2.12a) 

P'Pi =€U (2.12b) 

gij = -5 In ug'j 

P i  is hypersurface orthogonal (2.12c) 
and 

$ UJSj - €U-'PiPj )  = 0. (2.12d) 

Here Pi = gijP'. It follows from equations (2.12) that Pi is a conformal Killing vector for 
the space V,, and that the separation is what Woodhouse terms orthogonal. 
Woodhouse shows that for such separation Pi is the eigenvector of a Killing tensor. 
Now U separates in the preferred coordinate system so that 

U = U1(x1) + V(x"). 
The Killing tensor T j  associated with the separation can then be found easily, using the 
conformal Killing equation (2.12a)for Pi, and can be written as 

q = P& +€U$ij. (2.13) 

Clearly Pi is an eigenvector of this tensor. 

3. The integrability conditions for separation 

The conditions (2.11a) and (2.11~)  can be written as - -  
Pili +pi l i  = 0 

p .  . - p . .  =+ .p . -+ .p. 
and - - 

Ik 111 . ' I  7 1 1  
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where I denotes covariant differentiation in Qn. Adding these yields 
.. - - 

2 p .  I ! J  . = + . I 1  .p. - 4 . I 1  .p.. 

+ , j  = Pi+,iP) 

(3 .1)  

Contracting with Pi and using (2.1 l b )  gives 

sothat, substituting back into (3 .1) ,  - 
Pili = 0. (3 .2)  

The space vn must therefore admit a non-null covariantly constant vector field. The 
integrability conditions for (3.2) is 

d ' i i k p h  = 0. (3 .3)  

Contracting (3 .3)  on i and j gives 

d ' k p h  = 0 (3 .4)  
and using this result it is found that (3 .3)  can be written in terms of the Weyl tensor c h i j k  

as 

Contracting equation (3.5) with PJ yields 

( d i k  - R i i k / n -  1 )  = (n  -2)EchijkphPJ-Epipkdln - 1. (3 .6)  
Using (3 .6)  to eliminate the terms involving the Ricci tensor the equation (3.5) becomes 

(3.7) E c h i j k p h  = pkchijsphPs - p j c h i k s p h h P s .  

PsPsChijkPh = PkChijsPhP" - cChiksPhPs. 

Since the Weyl tensor is conformally invariant this equation can easily be transformed 
into the space V, to give 

(3.8) 
The requirement that (3 .8)  admit a non-trivial solution for Pi imposes conditions on 

the Weyl tensor. In a four-dimensional space-time a null tetrad can be chosen with li a 
principle vector and 

+eni)  = pi. 

Substituting this into equation (3.8) and considering each tetrad component of the 
equation gives the following information about the tetrad components of the Weyl 
tensor: 

90 = 9 4  = 0, and 

It follows that li and ni are both principle vectors of the Weyl tensor and that the other 
principle vectors correspond to the vector 1: found by making a null rotation about ni 
with the parameter a satisfying the quadratic equation 

(3.9) 
If 93 = 0, l i  and ni must be repeated principle vectors and so the Weyl tensor is of Petrov 
type D. If $3 # 0 and the equation (3 .9)  has distinct roots then the principle vectors are 
all distinct and the Weyl tensor is of Petrov type I. Finally if i,b3 # 0 and the equation 

- -4a'~l j1~ + 6a11/' + 4@3 = 0. 
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(3.9) has equal roots then the Weyl tensor is of Petrov type 11. The condition for equal 
roots is that SI,@+ 1 6 ~ 4 ~ ~ 4 ~  = 0. Since +z is real this cannot hold if E = +1 that is if the 
separable coordinate is time-like. This proves theorem 1. 

Written in terms of the Ricci tensor of V, the equation (3.4) becomes 

RikPk = (n -2)(tU-’UjijPJ-~U-2u,iU,jPJ) 

+ Pi[SI/-’gk’U\k) +i(n -4) U-3gk’u,ku,,] .  

Equation (2.1 Id), the condition that U separates, can be written as 

(3.10) 

qijp’ = €Piu-‘ uikjPkP’ (3.11) 

so that (3.10) can be rewritten as 
RikPk =-$(n -2)U-2U,jU,jP’ +Pi[;U-2gk’Ujkl +a(n -4 )u  -3  g - k /  U,ku,/ 

+t(n -2)EU-2UjkjPkp’]. (3.12) 

Contracting (3.12) with Pi yields 

(3.13) 

Eliminating the term in square brackets in (3.12), using (3.13), gives an equation which 
can be rewritten as an equation for U,i, namely 

u,j = EaU-’Pi +4U2(-RijP’ +€u-’PiRk[PkP’)/3a(n - 2 )  (3.14) 
where 

a = U,jPJ. (3.15) 

Equation (3.1 1) can be written in terms of a as 

a,i = €Piu-’ UlkjPkpj. (3.16) 

An expression for UkjP‘P’ can be found by differentiating (3.14) and so eliminating 
the term involvinggk’Ulkr from (3.13). It follows that the derivatives of Pi, U and a can 
all be written in terms of Pi and a alone. Also U = €Pipi. Hence if Pi and a are specified 
at a given point then Pi and U can be found in a neighbourhood of the point by using a 
Taylor series expansion. In fact Pi and a cannot be specified arbitrarily at the given 
point but must satisfy certain algebraic equations. These are the so called first set of 
integrability conditions and are: 

(i) the equation (3.8); 
(ii) the integrability conditions for equations (3.14) and (3.16); 

(iii) the equation obtained by writing equation (3.6) in the space V, and eliminat- 
ing all derivatives of U. 

Further integrability conditions are obtained by differentiation of the above set and 
eliminating derivatives of Pi, U and a. 

4. The integrability conditions in an Einstein space 

Consider an Einstein space, that is a space in which 
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For such a space -Rip’ +eU-’PiRklPkP1 is identically zero so that the equation (3.14) 
simplifies considerably. In fact it is found that 

and 

From these it follows that Ulij and alii are both proportional to Pipj SO that the 
integrability conditions for the equations (4.2) ‘and (4.3) are identically satisfied. 
Writing equation (3.6) in the space V, and eliminating all derivatives of U yields the 
simple equation (with n # 2) 

ChijkPhPJ = 0. 

Combining this with equation (3.8) gives 

ChijkPh = 0 (4.4) 

and this final equation (4.4) is all that remains in an Einstein space of the first set of 
integrability conditions. Differentiating (4.4) gives 

C h i j k  ;IPh + U-’ Clijk = 0 

and, provided CIi,k f 0, this equation will determine cr in terms of Pi. Using a null tetrad 
(and remembering that Ph is non-null) it can be shown that in a space-time equation 
(4.4) cannot admit a non-trivial solution for Ph unless Chijk is zero. This proves theorem 
2. Notice as a corollary that the Hamilton-Jacobi equation cannot separate in our sense 
in a non-flat empty space-time. 

5. Separability in a space V,, admitting an Abelian group of motions 

Consider the Hamilton-Jacobi equation in three-dimensional Euclidean space with 
spherical polar coordinates r, 8, 4, namely 

(5.1) 

This equation separates with respect to 4 (with U = 1) but not with respect to, say, r. 
Nevertheless a solution of the equation exists in which all the coordinates separate. 
This separation arises essentially because 4 is an ignorable coordinate. Writing 

S = O#J + S’(r,  e) 
the equation (5.1) becomes 

r2sin2e ( - as’ a r )  2 +sin e (ae)  - asr 2 +c2=m2r2sin26. 

This is an equation in only two variables and one can ask whether this equation 
separates, for arbitrary values of the constant c, in the sense used throughout this paper, 
that is can the equation, after multiplication by an integrating factor U(r, e), be written 
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as the sum of a function of r and a function of 8 whenever S’ is written as the sum of two 
such arbitrary functions. Since (5.2) is to separate for all values of the constant c it 
follows that both the equation 

as’ 2 r2sinze ( ar ) ’+sin 2(%) = m2r2 sin2e (5.3) 

and the integrating factor should separate. Notice that (5.3) is just the Hamilton-Jacobi 
equation in the subspace 4 = constant and the conditions for this to separate are just the 
conditions found in 9 2. This leads to the solution of (5.1) in which all the coordinates 
separate. These ideas can be used to generalise, in a space admitting an Abelian group 
of motions, the definition of separability given in the introduction. This generalisation 
is the definition used by Carter, Dietz and Collinson and Fugkre. 

Consider then a space V,, admitting an r-parameter group of motions generated by 
the commuting Killing vectors K‘ ( A  = n - r + 1, . . . , n ) .  Suppose the coordinates are 
adapted to these Killing vectors so that 5 = S i .  Then the metric gij is independent of 
the ignorable coordinates x A. Substituting 

A 

A S=CAx + s ’ ( x * ,  . a .  , X ” - ‘ )  

into the Hamilton-Jacobi equation 

gijS,iS,j - m ’ = o (5.4) 
yields an equation involving the coordinates x ‘ ,  . . . , x n P r  alone, namely 

g ” s I I s ; + 2 g ‘ A s ~ ~ A  +gABCACB - m 2  =o, (5.5) 
where I, J = 1, . , . , n - r,  The Hamilton-Jacobi equation is said to separate with 
respect to the coordinates x 1  and x A  if when the expression 

s ’=s ; (x ’ )+s ’ (x2 , .  . . ,Xn-‘) 

is substituted into (5.5) the resulting equation, after multiplication by an integrating 
factor V(x ’, . . . , x” - ‘ ) ,  can be written as the sum of a function of x ’ and a function of 
x 2 ,  x 3 , .  , . , xn-’ for arbitrary functions Si and S‘ and for arbitrary values of the 
constants CA. This last condition is necessary in order to obtain a complete solution S of 
the Hamilton-Jacobi equation. The separation of the ignorable coordinates is called 
trivial separation. The equation (5.5) will separate with respect tox for all values of the 
constants CA if and only if the equations 

g”SIIS)- m’ = 0 (5.6) 

and the expressions 

g t A s ;  

gAB 

and 
(5.7) 

all separate with respect to x 1  after multiplication by the same integrating factor U. 
Equation (5.6) is the Hamilton-Jacobi equation for the n - r  dimensional subspace 
x A  = constant. A practical method of seeking separable coordinates would be to 
investigate the separation in this subspace using the methods of the previous sections 
and then to treat g” and gAB as functions defined on the subspace and to use the 
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separation of (5.7) and (5.8) in order to arrive at a final set of necessary and sufficient 
conditions for the Hamilton-Jacobi equation to separate. Alternatively the fact that 
(5.6), (5.7) and (5.8) should all separate implies that 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

and 

U,la = 0. (5.15) 

From (5.10) and (5.13) theconformalmetriccomponentsg" andi'larefunctionsofx' 
alone. Assuming that the separable coordinate is non-null the coordinate transforma- 
tions x1 + f ( x ' )  and x A  + x A  + f A ( x l )  can be used to set g" = e(L1) and g" = 0. Then 
the necessary and sufficient conditions for separation are that there exists a coordinate 
system such that 

(5.16a) 

$1 = E  (5.16b) 

&?LO gA' = 0 (5 .16~)  

gAB,Ja = 0 (5.16d) 

' - A B  
p . 1  = 8ASlgg ,1 

and 

UJa  = 0. (5.16e) 

These conditions can be stated in a covariant form, namely that there exists a vector 
field Pi ,  orthogonal to the Killing vectors which generate the Abelian group of motions, 
and scalar fields U and xAB satisfying 

fPi=O, f u=o, fxAB=O 
5 K 5 A 

with 

pipi = 

/yAB,i(8;-€PiPj) = 0 

P i  is hypersurface orthogonal 

(5.17) 

(5.18a) 

(5.186) 

(5 .18~)  

(5.18d) 
and 

f u,i(8f-EPiPj) = 0. 
P 

(5.18e) 



Conditions for separation of Hamilton-Jacobi equation 1885 

The equivalence of the two sets of conditions can easily be demonstrated since a 
preferred coordinate system can be chosen with IC = 6; and P i  = 6f ,  x 1  = constant 
being the hypersurfaces orthogonal to Pi .  These conditions can easily be written in 
terms of the space V,, rather than the conformal space p,, as 

A 

PiPi =€U (5.196) 

P i  is hypersurface orthogonal ( 5 . 1 9 ~ )  

XAB,i(6;-€U-1PiPj)  = 0 (5.19d) 
and 

f uj(s f -€U- 'P'Pj )  = 0. (5.19e) 

The separation of the coordinate x'  is again orthogonal and the associated Killing 
tensor can be written down in the preferred coordinate system as 

P 

T j  = P i e  +cUlgij + $ A B K i K j  
A B  

(5.20) 

where 

qAB = - x A B ( x  ') dx'. I 
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